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A new free energy simulation method is described and applied to compute the relative binding free
energies (enantioselectivity) of enantiomeric guests (2) for several chiral host molecules (1). The
new simulation method is based on a previously described smart Monte Carlo method (MC(JBW))
that is here modified to interconvert diastereomeric complexes as well as to make more traditional
changes in conformation. Thus the new method simulates an equilibrium between enantiomeric
guests in the binding site of a host molecule and leads directly to the relative free energies of the
diastereomeric complexes in a single simulation. Here we show that the MC(IJBW) method originally
developed for simulations of single molecules can also be applied to simulations of molecular
complexes. We describe a further extension of this MC(IJBW) method that allows it to interconvert
diastereomeric complexes along with all other conformational degrees of freedom. We then use
the extended method (termed SME for simulated mutational equilibration) to compute the free
energies of enantioselection of various alanine derivatives (2) binding to ionophore 1 using the
AMBER* force field and the GB/SA model for chloroform solvent. One form of the method is found
to be more than an order of magnitude faster than traditional free energy perturbation (FEP)
calculations on the same system and gives free energies of enantioselection that are in close
agreement with experiment. The speed of the new method makes it a practical tool for use in

designing new enantioselective host molecules.

Calculating free energies of binding has long been the
goal of researchers interested in rational molecular
design. Unfortunately, however, free energy calculations
are difficult in many real applications and consequently
have been used only rarely to guide molecular design
efforts.! One reason such calculations are troublesome
is known as the sampling problem and follows from the
fact that accurate free energy results are obtained only
if the contributions of all significantly populated states
(including configurational, conformational, and vibra-
tional states) are included in the calculation.? The
problem is that including all such states with the
required Boltzmann weighting can be difficult if not
problematic with complex molecular systems. This is
because the number of important states can be very large
and because some sets of states (e.g., different conforma-
tions) are often separated by energy barriers that tradi-
tional molecular simulation methods such as Monte Carlo
(MC) or molecular dynamics (MD) have trouble crossing.3
To make matters worse, traditional methods (e.g., free
energy perturbation (FEP)) for calculating relative or
absolute binding free energies are multistage procedures
that require the sampling problem to be solved repeat-
edly, once for each stage of which there may be 10—50.4

To deal with such problems, we recently described
several new simulation methods (MC(JBW) and MC-

® Abstract published in Advance ACS Abstracts, December 1, 1997.

(1) Examples of free energy-directed molecular design: (a) Mertz,
K. M.; Kollman, P. A. 3. Am. Chem. Soc. 1989, 111, 5649. (b) Burger,
M. T.; Armstrong, A.; Guarnieri, F.; McDonald D. Q.; Still, W. C. J.
Am. Chem. Soc. 1994, 116, 3593.

(2) Dealing adequately with the sampling problem in necessary but
insufficient to get accurate free energy results—one also needs an
accurate potential energy force field which realistically includes effects
of solvent.

(3) For comments on the difficulty of the sampling problem with
molecules, see: (a) Mitchell, M. J.; McCammon, J. A. J. Comput. Chem.
1991, 12, 271. b) van Gunsteren, W. F.; Mark, A. E. Eur. J. Biochem.
1992, 204, 947. (c) van Gunsteren, W. F. J. Am. Chem. Soc. 1994, 116,
6293. (d) Balbes, L. M.; Mascarella, S. W.; Boyd, D. B. Rev. Comput.
Chem. 1994, 5, 337. (e) Reference 4.
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(JBW)/SD) that address the sampling problem for con-
formationally flexible molecules through the use of a
conformation-hopping Monte Carlo procedure we term
jumping between wells or JBW.5 In this paper, we
describe an adaptation of the JBW method that allows
the computation of relative free energies of binding by a
direct, single-stage procedure that we term simulated
mutational equilibration or SME. Because SME yields
relative free energies from a single molecular simulation,
it has a significant speed advantage over multistage
methods such as FEP. While SME should in principle
allow calculation of the relative binding of any two
molecules for a third, it is particularly simple in the case
of the relative binding of stereoisomers. Here we describe
such an application by using SME to compute the relative
binding free energies of enantiomeric substrates (2, X =
OMe, NHMe) for several ionophoric receptors (1, Y = H,
NHAc, NHAc-butenolide) whose enantioselectivities are
known experimentally.t®
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Simulated Mutational Equilibration (SME). SME
is based on a standard approach to evaluating confor-
mational free energy differences in which a thermody-
namically equilibrated ensemble of conformational states

(4) Review: Kollman, P. Chem. Rev. (Washington, D.C.) 1993, 93,
2395.

(5) (a) Senderowitz, H.; Guarnieri, F.; Still, W. C. 3. Am. Chem. Soc.
1995, 117, 8211. (b) Senderowitz, H.; Still, W. C. J. Comput. Chem.
1997, submitted.
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Table 1. Potential Energy Moments (kcal/mol) and Conformational Populations of the 1(X = H)-EtNH3;™ Complex at

300 K by Various Simulation Methods?

Senderowitz et al.

SDbd McCed MC(JIBW)cd MC(JBW)/SDbd
average energy —4.197 + 0.018 —4.199 + 0.018 —4.234 + 0.042 —4.197 + 0.015
standard deviation 4.177 £ 0.006 4.183 £ 0.004 4.180 £ 0.037 4.186 + 0.012
population (conf 1) 0.159 £+ 0.021 0.157 £ 0.010 0.152 + 0.008 0.156 + 0.004
population (conf 2) 0.123 £ 0.007 0.122 £+ 0.006 0.130 + 0.002 0.123 £+ 0.001
population (conf 3) 0.060 + 0.002 0.061 + 0.003 0.062 + 0.003 0.061 £ 0.002
population (conf 4) 0.073 £ 0.003 0.073 £ 0.005 0.073 £+ 0.003 0.073 £ 0.002
population (conf 5) 0.056 + 0.006 0.058 + 0.004 0.055 + 0.007 0.058 + 0.001
population (conf 6) 0.030 + 0.002 0.030 + 0.001 0.029 + 0.002 0.030 + 0.001

a Calculations at 300 K using the AMBERY* force field in vacuo ® 50 ns dynamics simulation. ¢ Average results from three 108-step
Monte Carlo simulations. 9 Error limits = 1 standard deviation of the measured quantity evaluated from three simulations starting with

different initial conditions.

is generated and the populations of the various confor-
mations are simply counted. Along similar lines, SME
is a procedure which simulates the thermodynamic
equilibration of two different molecules (e.g., alternative
substrates), which in the relevant case would be interact-
ing with a third molecule (e.g., a receptor). During an
SME simulation, chemically different substrates (e.g., A
and B) as well as conformations interconvert with one
another and the relative binding free energy of two
different substrates follows simply from their populations
at equilibrium (AGa-g = —RT In(populationa/popula-
tiong). While this simple idea is appealing and has been
applied in calculations of relative solvation energies of
halide ions by Tidor,® it has not been used to calculate
relative binding energies because single-step mutations
from one polyatomic chemical species to another are not
readily accomplished using traditional simulation pro-
cedures. New simulation methods that utilize single-step
mutations are however under development and have
been used to calculate relative solvation free energies of
simple molecules.” While mutations between molecules
having different numbers of atoms in a simulation
generally require special techniques (e.g., involving invis-
ible “dummy atoms”), mutations between stereocisomers
are straightforward because the differences between
stereoisomers are purely geometrical. Even with stereo-
isomeric mutations, there is still a problem that such
mutational events would be expected to be accompanied
by large energy increases and thus lead to poor sampling,
especially in dense systems such as molecular complexes.
To deal with this problem, we employ extensions of our
recently described JBW simulation methods (MC(JBW)
and MC(JBW)/SD)® that use a conformation-hopping,
smart Monte Carlo procedure to jump from one low-
energy region of conformational space to another and
thus to deal with the sampling problems that often
plague simulations of conformationally flexible molecules.
In the context of the current SME calculations, we have
extended our JBW simulation method so that it will
interconvert not just the low-energy conformers of single
molecules but also low-energy conformers of different
stereoisomeric molecules (here the enantiomers of 2)
within the binding site of a chiral third molecule (1). As
we will show, these interconversions can be made highly
efficient and result in rapid equilibration of a system of
two diastereomeric complexes. The relative free energy
of binding of the two enantiomers (enantioselectivity)
then follows from the equilibrium ratio of times the
system spends in the two diastereomeric states.
Jumping between Wells (JBW) Simulations with
Molecular Complexes. The JBW simulations we use

(6) Tidor, B. J. Phys. Chem. 1993, 97, 1069.
(7) Radmer, R. J.; Kollman, P. A. J. Comput. Chem. 1997, 18, 902.

are of two types, MC(JBW) and MC(JBW)/SD. MC(JBW)
is a state-hopping modification of simple Metropolis
Monte Carlo® while MC(JBW)/SD is a related hybrid
algorithm that alternates between MC(JBW) and SD
steps.>® As originally described, both methods relied on
variations in intramolecular internal coordinates (bond
lengths, bond angles, and torsion angles) for conforma-
tional jumps and therefore were applicable only to single-
molecule simulations. Thus for binding energy calcula-
tions, both MC(JBW)-based methods had first to be
extended to handle systems having more than one
molecule. This extension was accomplished by adding
internal coordinates defining intermolecular degrees of
freedom to the intramolecular internal coordinate arrays
that were varied by the MC procedure. These additional
coordinates consisted of translation vectors and rotation
matrices that, in combination with intramolecular coor-
dinate variations, made possible the efficient transforma-
tion of one configuration of a molecular complex into
another. Details of the MC(JBW) simulation method for
multimolecular complexes are provided as an Appendix.

To establish that our new JBW simulation method
produced the desired thermodynamic ensemble with
relevant molecular complexes, we compared MC(JBW)
and MC(JBW)/SD results with those from established
simulation methods (Metropolis Monte Carlo (MC) and
stochastic dynamics (SD)) for the bimolecular complex
of 1(X = H) and EtNH;". This simplified complex was
chosen because, unlike the 1-2 systems, the energy
barriers separating the various conformations of 1(X =
H)-EtNH;* are small enough to be crossed at a reason-
able rate by simple MC and SD at 300 K. Our JBW
simulations began with a 30000-step low-mode*® confor-
mational search that located 12 conformational minima
within the lowest 2 kcal/mol. Due to the C, symmetry
of 1, these 12 minima actually corresponded to 6 pairs
of chemically distinct conformers but all 12 minima were
used as input data for our JBW simulations so that the
entire potential energy surface would be efficiently
explored and convergence could be assessed by comparing
the populations of symmetry-equivalent conformations.
In these simulations, both intermolecular and intramo-
lecular degrees of freedom were varied by the JBW
algorithm (see Appendix) as noted above. Comparisons
of the simulation results obtained using SD, MC, MC-
(JBW), and MC(JBW)/SD under otherwise identical
conditions are shown in Table 1.

These data show that the first two potential energy
moments and the populations of the six chemically

(8) Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A.;
Teller, E. J. Chem. Phys. 1953, 21, 1087.

(9) Guarnieri, F.; Still, W. C. J. Comput. Chem. 1994, 15, 1302.

(10) Kolossvary, I.; Guida, W. C. J. Am. Chem. Soc. 1996, 118, 5011.
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Table 2. Free Energies (kcal/mol) of Enantioselective Binding for Chiral lonophore 1 and Enantiomeric Alanine
Derivatives 2 by Various Simulation Methods? and by Experiment

receptor (1) substrate (2) FEP® MC(JIBW)° MC(JBW)/SDd exptlb
1. X=H Y = OMe 03+0.1 05+0.7 03+0.1 04+0.1
2. X=NHAc Y = OMe 0.6 £0.1 06+04 05+0.1 0.8+0.1
3. X=NHAc Y = NHMe 1.0+0.2 0.7+0.6 0.6 +0.2 11+02
4. X = NHAc-butenolide Y = NHMe 1.9+0.2 20+£13 20+£0.2 1.7+0.1
CPU time = 200 h 126 he¢ 13 he

a Calculations at 300 K using the AMBER* force field and the GB/SA continuum model for chloroform. b Data from 21 window, 500
ps/window free energy perturbation simulation using MC/SD as an ensemble-generating procedure as previously reported in ref 1b. ¢
108-step simulation. 9 10 ns (107 step) simulation. ¢ CPU time of simulation (~1 ns) on a single R10000 processor necessary to give free
energy of enantioselection that is stable to within 0.2 kcal/mol of final result for the last (X = NHAc-butenolide, Y = NHMe) calculation.
These times do not include the initial conformational search times which are ~2 CPU hours for finding representative minima or 10 CPU
hours for finding all minima within the lowest 10 kcal/mol (see footnote 11).

distinct conformations from the room-temperature en-
sembles of 1(X = H)-EtNH3" generated by classical SD
and MC and by our conformation-jumping MC(JBW) and
MC(JIBW)/SD methods are indistinguishable from one
another within the limits of the convergence that could
be achieved. As indicated by the small standard devia-
tions of the conformational populations and by compari-
sons of populations of symmetry-equivalent conforma-
tions (data not shown), all four simulations appear well
converged after 108 steps or 50 ns, though the conver-
gence of the MC(JBW)/SD is particularly good. These
results imply that all four methods generate the same
thermodynamic ensemble and indicate that no detectable
error has been introduced into our JBW methods by the
inclusion of intermolecular degrees of freedom.

Free Energies of Enantioselection by SME. To
use such JBW simulation methods in an SME procedure
to compute the relative binding free energies of enanti-
omers, it is necessary that the MC-based jumps previ-
ously used to interconvert different conformational states
also include jumps that interconvert enantiomers (here
alanine derivatives (D)2 and (L)2). Such molecule-mutat-
ing jumps are particularly easy in the case of enantiomers
(or other stereoisomers) because they are purely geo-
metrical mutations and may be effected by altering
relevant improper torsion angles controlling the chirality
of 2 in the Z-matrix that defines the system. Thus, in
our simulations of 1-2, we treat the chirality of 2 just
like any other geometrical degree of freedom.

To use this methodology to compute the relative
binding free energies of the two enantiomers of 2 for
ionophore 1, we first carried out low-mode conformational
searches of both diastereomeric complexes (1:(p)2 and
1-(L)2). Resulting lists of coordinates for the low-energy
(<10 kcal/mol of the ground state) conformers! of both
complexes were combined and provided as input data (the
X; list in the Appendix) for the MC(JBW) or MC(JBW)/
SD algorithms that simulated the equilibrium between
the two diastereomeric complexes 1-2. The MC(JBW)
(108 steps) and MC(JBW)/SD (10 ns) simulations of four
different 1-2 systems were each carried out at 300 K
using the same AMBER* force field and GB/SA solvation
model in MacroModel V5.5 and previously described for

(11) While most of our simulations employed every minimum energy
conformer located by the conformational searches, we found that
virtually identical free energy results could be obtained when families
of closely related conformations were replaced by a single representa-
tive example of the family. Closely related conformations are ones that
are rapidly interconverted by standard simulation methods (e.g., simple
MC or SD) at the temperature of the simulation. In practice, we
distinguish such families by graphical examination of superimposed
family candidates. Thus while it is important to include a representa-
tive example from each significantly populated conformational well as
input to the JBW algorithm, it is not necessary to carry out extensive
conformational searches to locate each minimum energy form.

these systems.?® At each step in these simulations, the
current structure was compared by Cartesian coordinate
superimposition'? with the conformers in the input data
lists (Xj), assigned to the family of the most similar
conformer (and diastereomer, see Appendix, step 5) and
the assignments were accumulated to provide ensemble-
averaged populations. The equilibrium populations of all
conformations of the diastereomeric 1-(p)2 and 1-(L)2
complexes thus obtained provided the relative free energy
of enantioselective binding simply from AG = —RT
In(population;.ey/population;.yy).

The SME free energy results from four 1-2 systems
having known experimental enantioselectivities are given
in Table 2 along with previously reported FEP-derived
results.’® First we note that all simulations give free
energies of enantioselection that are in good and com-
parable agreement with experiment. Second we see that
the SME calculations (using both MC(JBW) and MC-
(IJBW)/SD methods) are in excellent agreement (1o error
bars touch or overlap) with each other and with the FEP
results. Among the three simulation methods we com-
pare, the hybrid MC(JBW)/SD algorithm is by far the
fastest. Indeed, CPU time comparisons indicate that
MC(JIBW)/SD converges an order of magnitude faster
than either MC(JBW) or FEP in these systems.

For the MC(JBW)/SD-based SME enantioselectivity
calculations, Figure 1 shows how the free energies of
enantioselection evolve in time. Though we carried out
these simulations for a total of 10 ns, it can be seen that
the free energy stabilizes within 0.2 kcal/mol of its final
value by 2 ns in all four of the 1-2 systems we studied.
Since 2 ns simulations on these systems can be carried
out in less than a day on a single R10000 processor, these
results suggest that free energy calculations can be a
practical tool in the design of organic host molecules of
contemporary complexity.

The reason MC(JBW)/SD calculations converge so well
is that they efficiently interconvert all the known con-
formers and diastereomers of the 1-2 complexes in a
single simulation. Thus the speed advantage over FEP
calculations largely stems from the multistage nature of
FEP which in our systems required 21 different simula-
tions (windows) to slowly mutate (p)2 into (L)2 within
the binding cavity of 1. As noted previously,'® attempts
to speed the FEP results by using fewer windows or
shorter simulation times led only to insufficient conver-
gence. Why MC(JBW) is not as efficient as MC(JBW)/
SD is less obvious as both are single-stage methods.
However, by monitoring the conformer/diastereomer
(from the X; list) which the two simulations generated

(12) Kabsh, W. Acta Crystallogr. 1976, A32, 944. Kabsch, W. Acta
Crystallogr. 1978, A34, 837.
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Figure 1. Convergence of free energies of enantioselection of 1-2 derivatives using the MC(JBW)/SD-based SME method.

1+(L)2 Conformers

1+(D)2 Conformers| *. ' s

1+(L)2 Conformers

1+(D)2 Conformers

i L Lo,
B e —
g s s WOVIVE T MC(JBW)

MC(JBW)/SD

Simulation length (x 108 steps)

Figure 2. Conformers and diastereomers of 1(X = H)-2(Y = OMe) sampled during MC(JBW) and MC(JBW)/SD simulations (see

text).

in time, we could see that MC(JBW)/SD interconverts
different structures (both different conformers and dia-
stereomers) much more efficiently than does MC(JBW).
Figure 2 shows such monitoring for both simulation
methods on 1(X = H)-2(Y = OMe). The various conform-
ers the simulations visited over time are indicated on the
vertical axes with the lowest energy conformers being
closest to the center lines. Above the center lines are
conformers of (L)2 complexes while the diastereomeric (D)-
2 complexes are shown below the center lines. Thus
Figure 2 indicates that the simple MC(JBW) method
sporadically spends long periods of time in the vicinity
of the same structure between periods when the structure-
hopping JBW algorithm rapidly interconverts conformers
and diastereomers. Such periods of infrequent structure
interconversion occur when simulation structures stray
and remain far from the bottoms of energy wells (where
JBW structure-to-structure jumping is most efficient). In
comparison, the hybrid MC(JBW)/SD algorithm inter-
converts structures efficiently throughout the entire
simulation implying that the SD portion of the algorithm
favors more frequent passes near energy well bottoms.
Whether these results reflect a less than optimal ran-
domization protocol in our MC procedure or some inher-

ent advantage of SD in efficiently exploring single-energy
wells is not clear at this time.

Conclusion

In this paper we have shown how a Monte Carlo
method (JBW) can be used to simulate an equilibrium
between two different molecules (here stereoisomers) and
thus yield the relative binding free energies of those
molecules for a third. Because the new method (SME)
involves only a single simulation, it is more efficient than
traditional multistage simulation methods such as free
energy perturbation (FEP). The speed advantage of SME
is roughly equal to half the number of stages (FEP
windows) that must be used to obtain comparable degrees
of free energy convergence. SME takes approximately
twice as long to converge as a single stage in an FEP
simulation because SME must fully explore the populated
conformational space of two significantly different mol-
ecules. In contrast, a single FEP stage must fully explore
the (smaller) conformational space of two molecular
systems that are generally very similar to one another
(A4 is typically small).

For the ionophoric complexes studied here, we found
one type of SME simulation (based on the MC(JBW)/SD
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method) to be particularly fast. In fact, this method
converged roughly an order of magnitude faster than
analogous (21-stage) FEP calculations on the same mo-
lecular systems. Other attractive features of the SME
approaches are that they provide immediate estimates
of total free energy differences that grow more precise
with increasing simulation time and can readily be
broken down into a number independent subsimulations
(each having different initial conditions) for running in
parallel when more rapid results are desired. Even on
a single R10000 processor, the simulations described here
give free energy results that are converged to within 0.2
kcal/mol within 1 CPU day and thus are fast enough to
be used as a practical tool for molecular design (e.g., in
designing chiral resolving agents or enantioselective
catalysts). We use SME here to compute the free energy
difference between two molecular complexes, but the
same procedure can be applied to compute the relative
free energies of many different of complexes in a single
simulation though the simulation convergence time will
increase accordingly. A limitation of our SME method
stems from the large atomic movements that characterize
all IBW-like procedures—they require that solvation be
handled by continuum models (e.g., GB/SA®3) until some
practical way can be found to make large movements of
both solute and solvent molecules.

While relative free energies of different stereoisomers
or stereoisomeric complexes are straightforward to cal-
culate using SME, the more general case of computing
the relative binding energies of constitutionally different
molecules requires an extension to our current imple-
mentation, e.g., involving invisible place-holding particles
(dummy atoms) as used in FEP for similar purposes. The
theoretical groundwork for such an extension has already
been laid by Tidor.® This limitation notwithstanding, the
work described here establishes the potential of the SME
approach for practical, single-stage free energy calcula-
tions and illustrates its use by computing the relative
free energies of several diastereomeric host—guest com-
plexes. Extension to the general case of any two molec-
ular mutants is underway.

Acknowledgment. This work was supported by
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Appendix

MC(JIBW) and MC(JBW)/SD. Extension to molecu-
lar complexes. The MC(JBW) algorithm has been de-
scribed previously for conformational free energy simu-
lations of single molecules.®> To extend the method to
molecular complexes requires that conformation-inter-
converting transformations (T;; of step 3 below) which are
used to interconvert different structures on the X; list
(step 1) include intermolecular transformations that
control the relative orientation and position of a complex’s
constituent molecules. Such intermolecular transforma-
tions have the form of rotation matrixes and translation
vectors. The complete MC(JBW) algorithm for molecular
complexes follows:

Step 1. Carry out a conformational search of the
complex to find the set of low-energy (typically within 5
kcal/mol of the global minimum) conformers—call these
structures X;.

(13) still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T. J.
Am. Chem. Soc. 1990, 112, 6127. Qiu, D.; Shenkin, P. S.; Hollinger, F.
P.; Still, W. C. J. Phys. Chem. A 1997, 101, 3005.
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Step 2. Align each structure on the X; list by global
translation and rotation with the first member of the X;
list using three arbitrarily chosen bonded atoms (refer-
ence atoms, designate them atoms 1—2—3) from the first
molecule of the complex. This alignment superimposes
atom 1, places atom 2 along the first member’s 1-2 bond
axis, and places atom 3 in the first member's 1-2-3
plane.

Step 3. For each pair of structures (i, j) in the X; list
and for a complex consisting of m molecules, calculate m
intramolecular transformation sets (each consisting of a
nonredundant set of n — 1 bond lengths, n — 2 bond
angles, and n — 3 torsions where n is the number of
atoms of the mth molecule) and m — 1 intermolecular
transformation sets (each consisting of a rotation matrix
and a translation vector) that when applied to structure
i will generate structure j—call these transformation sets
Tij.

Step 4. Pick a starting geometry of the complex—call
this structure Y.

Step 5. Find the conformer on the X; list that is closest
to Yo—call this conformer X,. For molecular complexes,
we use a least-squares superimposition'? of the structure
in Cartesian coordinates with the members of the X; list
(having the correct chirality, i.e., that of Y;) to determine
which conformer is closest.

Step 6. Randomly choose a conformer from the X;
list—call this conformer Xi.

Step 7. Independently apply each of the intramolecu-
lar components of the transformation matrix Txx, to each
of the molecules constituting structure Y, to generate
intermediate structure Y.

Step 8. Globally translate and rotate structure Yy to
align its 3 reference atoms as defined in Step 2 above
with those of the trial conformation X.

Step 9. Apply the intermolecular components of the
transformation matrix Tx,x, to intermediate structure Yy
to generate structure Y;.

Step 10. Apply small random variations to (typically
two) randomly chosen degrees of freedom (including both
intermolecular and intramolecular coordinates) to struc-
ture Y, to generate the new trial structure Y.

Step 11. Verify that the resulting structure Y, is
indeed closer to the intended trial structure Xy than to
any other stucture on the X; list. If not, reject the step.
Closeness is defined in step 5.

Step 12. Compare energies of Yy and Y,, accepting Y,
with a probability defined by Metropolis:®

p =min{1, exp[—(EY, — EY)/KkT]}

Step 13. Define the resulting structure as Y, and go
back to step 5.

For MC(JBW)/SD, the above MC(JBW) procedure was
used as the MC component of the hybrid MC/SD proce-
dure described previously in which simulation steps
alternated between single MC and SD steps.® No ad-
ditional changes in the MC/SD procedure were necessary
for use with molecular complexes.
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